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Background and Summary of Prior Results (1)

• We have been working on the system concept of a low-cost low-

maintenance Mars Regional Navigation Satellite System 

(MRNSS) [1] with the following key principles

• Capitalize on the build-up of orbiting and surface infrastructures on Mars 

during the human Mars exploration era [2][3][4]

• Leverage on a new geometric trilateration method that simultaneously 

performs absolute positioning and relative positioning [5][6]

• Introduce the concept of using relative positioning that provides regional 

navigation services in the vicinity of a human Mars landing site (~100 

km), thereby relieving the stringent requirements on orbit determination 

(OD) of Mars navigation satellites
3



Background and Summary of Prior Results (2)

• Proposed Mars Regional Navigation Satellite System
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Background and Summary of Prior Results (3)

• Orbits of the Notional Mars Navigation Nodes (3-D View)
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Background and Summary of Prior Results (4)

• Projection of the Navigation Nodes on Mars Surface (2-D View)
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Simulations of Accuracy Performances
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Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	
0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	
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0	cm	 0.00	 3273.85	 6547.69	 13095.39	 32738.48	 65476.99	 196431.3	 229169.9	

0.10	cm	 11.27	 3273.70	 6547.54	 13095.23	 32738.32	 65476.82	 196431.1	 229169.7	
0.25	cm	 28.19	 3273.56	 6547.35	 13095.01	 32738.08	 65476.58	 196430.9	 229169.5	

0.50	cm	 56.37	 3273.51	 6547.12	 13094.69	 32737.71	 65476.19	 196430.5	 229169.1	

1.00	cm	 112.74	 3274.15	 6547.03	 13094.24	 32737.04	 65475.45	 196429.7	 229168.3	
2.00	cm	 225.48	 3278.35	 6548.30	 13094.06	 32735.98	 65474.10	 196428.1	 229166.7	

5.00	cm	 563.71	 3313.95	 6563.76	 13099.34	 32735.15	 65471.23	 196423.9	 229162.4	

Table	1.	s3D	Absolute	Localization	Error	standard	deviation	(cm)	of	the	New	Scheme.	PDOP=113.17.	
	
	

Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	

0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	
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0	cm	 14.43	 21.57	 35.07	 65.44	 160.06	 319.04	 956.04	 1115.33	
0.10	cm	 21.59	 26.82	 38.47	 67.27	 160.75	 319.32	 956.05	 1115.32	

0.25	cm	 42.77	 45.58	 53.22	 76.58	 164.76	 321.27	 956.58	 1115.75	

0.50	cm	 81.89	 83.33	 87.69	 103.45	 178.67	 328.48	 958.82	 1117.63	
1.00	cm	 161.95	 162.62	 164.84	 173.62	 226.38	 356.41	 968.34	 1125.72	

2.00	cm	 323.00	 323.28	 324.34	 328.78	 359.12	 452.05	 1006.71	 1158.71	

5.00	cm	 806.95	 806.99	 807.34	 808.99	 821.36	 865.36	 1246.30	 1371.59	

Table	2.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	100	km.	Sigma	=	100	m.	Delta	=	100	m.	

	
	

Our	Proposed	

Scheme	

GPS	Satellite	Position	Error	

0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	

P
se
u
d
o
-r
an
ge
	

er
ro
r	

0	cm	 0.14	 1.59	 3.18	 6.35	 15.87	 31.73	 95.20	 111.07	

0.10	cm	 16.03	 16.10	 16.32	 17.20	 22.47	 35.45	 96.42	 112.10	
0.25	cm	 40.08	 40.10	 40.18	 40.53	 42.99	 50.93	 103.02	 117.79	

0.50	cm	 80.15	 80.16	 80.19	 80.36	 81.59	 85.99	 123.99	 136.48	

1.00	cm	 160.31	 160.30	 160.32	 160.39	 160.97	 163.19	 185.83	 194.34	
2.00	cm	 320.62	 320.61	 320.61	 320.63	 320.89	 321.95	 333.77	 338.52	

5.00	cm	 801.54	 801.53	 801.52	 801.52	 801.58	 801.93	 806.47	 808.38	

Table	3.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	10	km.	Sigma	=	100	m.	Delta	=	100	m.	
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Challenges of Deep Space Tracking for Multiple Spacecraft

• Traditional deep space tracking techniques include Doppler, ranging, and 

Delta Differential One-Way Ranging  (DDOR)

• 2-Way Doppler/ranging requires tight coordination between ground and flight 

(Doppler compensation), and 1 ground station tracking 1 spacecraft (1-to-1)

• DDOR is 1-way, but requires 2 ground station tracking 1 spacecraft (2-to-1)

• Tracking requires tying up an antenna for a long time [8].  When number of 

missions increase, and for missions with multiple spacecraft, there might not 

be enough DSN antenna assets to meet missions’ communications and 

tracking needs 

• There is a desire to extend the current deep space tracking techniques to 

support multiple spacecraft in a beam to improve the antenna usage 

efficiency
8



Simultaneous 2-Way Doppler/Ranging (1)

• A collaborative flight-ground architecture

▪ Assume Doppler/ranging in X-band, for low rate commands/telemetry

▪ All Mars orbiters lie within the beamwidth of a DSN 34-m BWG antenna

▪ For N orbiters, the downlink operate in N allocated frequency bands 

separated by N-1 guide bands to prevent interference

▪ Changes in flight and ground systems

– The N orbiters time-share a single uplink; commands differentiated by SCID

– The ground “Doppler-compensates” the uplink signal in either ways: a) w.r.t. the 

Mars center, b) w.r.t. the average (centroid of Doppler of N orbiters)

– Note: guard bands must be wide enough to accommodate the residual Doppler.  

Preliminary simulation: residual Doppler and Doppler rate are bounded by 45 KHz & 

2.6 Hz/s 

9



Simultaneous 2-Way Doppler/Ranging (2)

• Flight radio upgrade

▪ A different turn-around-ratio for each spacecraft so the same uplink would 

be coherently “turned-around” to modulate the telemetry and ranging 

signals on a different allocated downlink frequency

▪ A well-designed tracking loop that can sweep, acquire, and track the 

unknown uplink carrier phase and high residual Doppler frequency

• Ground upgrades

▪ One ground antenna receives all N downlink signals with different carrier 

frequencies via Multiple Spacecraft Per Aperture (MSPA)

▪ Each signal stream is extracted via band-pass filtering and down-

converted to IF for telemetry, Doppler, and range processing

10



Simultaneous 2-Way Doppler/Ranging (3)
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• Doppler and Doppler Rate Profiles



Simultaneous 2-Way Doppler/Ranging (4)
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• Spacecraft Radio Schematic
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Simultaneous 2-Way Doppler/Ranging (5)
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• Smart Sweeping Algorithm
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Same Beam Interferometry (1)
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Slide provided by Jim Border et. al. “Precise Tracking of the Magellan 

and Pioneer Venus Orbiters by Same-Beam Interferometry”, AAS/AIAA 

Spaceflight Mechanics Meeting, Feb 1991, Houston, Texas



Same Beam Interferometry (2)
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Slide provided by Jim Border et. al. “Precise Tracking of the Magellan 

and Pioneer Venus Orbiters by Same-Beam Interferometry”, AAS/AIAA 

Spaceflight Mechanics Meeting, Feb 1991, Houston, Texas



Same Beam Interferometry (3)
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Slide provided by Jim Border et. al. “Precise Tracking of the Magellan 

and Pioneer Venus Orbiters by Same-Beam Interferometry”, AAS/AIAA 

Spaceflight Mechanics Meeting, Feb 1991, Houston, Texas



Same Beam Interferometry (4)

• Since the introduction of SBI, SBI was used or proposed for use in 

deep space scenarios, e.g. approach/landing, ascent/docking

• Examples

▪ Q. Liu, F. Kikuchi, K. Matsumoto, et. al., “Error Analysis of Same-Beam Differential VLBI 
Technique using two SELENE satellites,” Advances in Space Research 40 (2007).  

▪ M. Chen, Q. Liu, “Study on Differential Phase Delay Closure of Same-Beam VLBI,” 2nd

International Conference on Computer Engineering and Technology, April 2010, 
Chengdu, China

▪ S. Chen, Q. Liu, “A Study on Accurate Same Beam Interferometry Differential Phase 
Delay Closure,” 12th International Conference on Computer and Information 
Technology, October 2012, Chengdu, China

▪ T. Martin-Mur, D. Highsmith, “Mars Approach Navigation Using the VLBA,” Proceedings 
of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, 
September 28 – October 2, 2009 17



Same Beam Interferometry (5)

• Preliminary SBI Navigation Covariance Analysis of Mars Scenario 

▪ Include spacecraft structure modeling, and media and gravity effects 

▪ Angular momentum desaturations every day, 1 mm/s uncertainty per 

axis, 0.1 mm/s also tested

▪ Use 3 days of prior data, assume 12-hour latency

▪ SBI+2-way Doppler improves OD accuracy (Doppler) by a factor of 2 - 10

18



Concluding Remarks, Ongoing and Future Work

• We report on the progress on the Mars In-Situ Navigation Study

▪ Position accuracy simulations confirm the feasibility

▪ Introduce simultaneous tracking techniques to improve OD accuracy 

• Establish analysis/simulation processes and tools for more Mars 

scenarios, and can be easily extended to lunar scenarios

• Ongoing and future work

▪ Design of navigation signaling scheme that enable fast integer-ambiguity-

resolution for carrier phase tracking in the Mars poor PDOP environment

▪ Examine the effect of dual & triple frequency receivers to improve the 

acquisition and tracking performance at Mars

▪ Conduct hardware-in-the-loop demonstration
19
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